

Organic Drift Studies during Fall 2005

Theodore Kennedy & Scott Wright GCMRC

Outline

- Background
- Objectives
- Methods
- Results
- Conclusions
- Future work—using hydroacoustics to monitor organic drift

Rainbow trout and humpback chub are drift feeders

- Rainbow trout and humpback chub are drift feeders
- Rates of Cladophora and midge drift positively correlated

- Rainbow trout and humpback chub are drift feeders
- Rates of Cladophora and midge drift positively correlated
- Therefore, higher amounts of organic drift should = more food

Туре	Typical Concentration (mg/l)	What is it?	Where does it come from?	Who eats it?
Coarse Organic Matter >1 mm	~0.04	Mostly algae, some aq. veg., a few inverts	Glen Canyon Reach	Fish
Fine Organic Matter >0.001 mm	~0.4	Plankton, tiny bits of detritus, etc.	Lake Powell	Filter feeding inverts, juv. fishes
Dissolved Organic Matter <.001 mm	~4	Carbs, fatty acids, humic acids, etc.	Lake Powell	Bacteria

Hydrograph

Objectives

- Determine whether organic drift differs during low fluctuations relative to steady flows
 - Previous research indicates:
 - Drift is low during steady flows and higher during fluctuating flows (Leibfried and Blinn 1987)
 - Seasonality of drift is unclear (McKinney et al 1999, Leibfried and Blinn 1987, Shannon et al 1996)
- Test feasibility of using acoustics to monitor organic drift

Methods

- Data collection
 - Two different plankton nets used—0.063mm mesh & 1mm mesh
 - Nets equipped with flow meter at their mouth Vertically and width integrated sample collection
- Processing
 - Subset of samples sorted (algae, aquatic veg., invertebrates, plankton), weighed, burned
 - Other samples just weighed and burned

Is There a Relationship Between Discharge and Concentration?

Antecedent Conditions and Discharge Affect Organic Concentrations

Is it Just More Concentrated?

Results

*= Load
calculated
based on
rating curve

Time	Avg Conc. (mg/l)
August 2005*	0.0099
Sept 2005 Fluctuate*	0.027
Sept 2005 Steady	0.033
Oct 2005 Fluctuate	0.044
Oct 2005 Steady	0.0092
May 2006*	0.026

Results Time

Discharge Avg Range (cfs) Conc. (mg/I)11,000-August 0.0099 2005* 18,500 **Sept 2005** 6,750-9,050 0.027 Fluctuate* **Sept 2005** 8,210-8,500 0.033 Steady Oct 2005 0.044 6,950-9,310 **Fluctuate** 8,640-8,720 Oct 2005 0.0092 Steady May 2006* 6,900-12,100 0.026

*= Load calculated based on rating curve

Results Time

Avg **Discharge Daily** Range (cfs) Volume Conc. (mg/l) (liters) 11,000-3.60B **August** 0.0099 2005* 18,500 **Sept 2005** 0.027 6,750-9,050 1.95B Fluctuate* **Sept 2005** 0.033 8,210-8,500 1.95B **Steady** Oct 2005 0.044 6,950-9,310 2.00B **Fluctuate** 0.0092 Oct 2005 8,640-8,720 2.04B **Steady** May 2006* 6,900-12,100 0.026 2.39B

*= Load calculated based on rating curve

Results

*= Load
calculated
based on
rating curve

Time	Avg Conc. (mg/l)	Discharge Range (cfs)	Daily Volume (liters)	Daily Load (kg) +/- 15% error
August 2005*	0.0099	11,000- 18,500	3.60B	455 387-523
Sept 2005 Fluctuate*	0.027	6,750-9,050	1.95B	535 454-616
Sept 2005 Steady	0.033	8,210-8,500	1.95B	683 580-785
Oct 2005 Fluctuate	0.044	6,950-9,310	2.00B	916 778-1053
Oct 2005 Steady	0.0092	8,640-8,720	2.04B	1 <mark>95</mark> 166-224
May 2006*	0.026	6,900-12,100	2.39B	641 545-737

Conclusions

- Antecedent Conditions have a Larger Effect on Drift Concentration than Fluctuations
- What determines antecedent conditions?
 - Seasonality of algae growth?
 - Lower flows led to desiccation and entrainment of Cladophora growing between 7-9k stage elevation
 - Lower fluctuations allowed for higher rates of algae growth?

What makes for good fishing?

Using Acoustics to Monitor Drift

Backscatter is a Predictor of Fine Organics

